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The Oseen equations for the two-dimensional flow of a Boussinesq fluid over a 
thin barrier placed in a channel of finite depth are solved in the double limit 
v+ 0, t+m under the hypothesis that the velocity at  the tip of the barrier is as 
weakly singular as possible. The predicted flow patterns and drag coefficients are 
in closer agreement with Davis’s experimental observations than those of the 
Long model. 

1. Introduction 
Several authors, notably Long (1955), Yih (1960), Drazin & Moore (1967) 

and Miles (1 968) have solved the steady state equations for the two-dimensional 
flow of a stratified fluid over an obstacle, using the Long model for which the 
governing equation is the reduced wave or Helmholtz’s equation. The predicted 
flows provide a reasonable description of the real flow for small stratification and 
sufficiently small obstacles, but for larger stratification and larger obstacles the 
predicted flows contain complex lee-wave patterns with several closed stream- 
lines (cf. Drazin & Moore 1967), which bear no resemblance to the observations 
of Davis (1969). 

In  an earlier paper (Trustrum 1964), the author solved the non-steady Oseen 
equations for the two-dimensional flow of a Boussinesq fluid? in a channel of 
finite depth past a distribution of sources and found that in the limit of infinite 
time, upstream influence can occur provided the inverse Froude number 
is greater than one. A mechanism is provided by internal gravity waves of 
zero frequency and finite group velocity (cf. Bretherton 1967). If upstream 
influence occurs, then the Long model is invalidated, though it may still provide 
a close approximation to the flow under certain conditions. Since upstream 
influence has been observed in stratified fluids by Long (1955) and in rotating 
fluids by Pritchard (1969), the aim of the present work was to investigate the 
flow over a thin vertical barrier, by means of a model which allowed upstream 
influence ko occur, to see if the predicted flow patterns provided a satisfactory 
description of the real flows observed by Davis (1969). 

For a given Fourier component in the vertical direction, the Oseen solution 
in the limit of infinite time has one unknown constant in the upstream flow and 
three in the downstream flow (cf. Trustrum 1964). The inviscid boundary con- 
ditions on the barrier are sufficient to determine the upstream flow but are 

t A Boussinesq fluid is a fluid for which the Boussinesq approximation holds. 
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insufficient for the downstream flow. However, the downstream flow can be 
made determinate by following a suggestion of Stewartson (1968) and using the 
viscous boundary conditions on the downstream side of the barrier. This technique 
is used in this paper and the results, which are presented in figures 1 to 6, are 
encouraging. 

2. Equations of motion 
We consider the two-dimensional flow of an inviscid Boussinesq fluid past a 

vertical thin barrier of height )H placed on the bottom of a channel of depth H ,  
whose boundaries are rigid horizontal planes. At an infinite distance upstream 
of t.he barrier, the fluid has, a t  any finite time, a uniform velocity U parallel to 
the horizontal axis Ox and density ( y )  = po - (popHy/n) ,  where y is the 
dimensionless vertical co-ordinate. The axes are chosen so that the origin is 
fixed at  the foot of the barrier and the velocity u = (U + Uu, Uv) corresponds 
to the Cartesian co-ordinates (Hxln,  Hyln). On scaling the time by H/nU and 
writing the density as pWm ( y )  + ( U2n/gH)pop the Oseen equations, in which 
squares and products of u, v and p are neglected, are 

au au ap -+- = -- 
at ax ax' 
av av ap 
-+- = -P--7 
at ax aY 
au av -+- = 0, 
ax ay 

aP aP -+---k2v = 0, at ax 

where po U2P = Igp-m (y)dy+p and p is the pressure. A perturbation stream 
function + is defined from the continuity equation by 

and it follows that $ satisfies the equation 
u = aglay, v = -ap/ax, 

where k2 = gpH2/n2U2 and l /k is an internal Froude number. 
On satisfying the conditions 

+ = O  on y = O , n ,  

on the boundaries of the channel, the formal solution of (2.1) in the limit as t +a0 
for fixed (2, y), is (cf. Trustrum 1964) 

K m 

n = l  K+l 
$ = 2 Cnsinny+ x Dneanxsinny (x < 0) 

K 

n = l  
and $ = x (Ancoscxnz+Dnsinanx+Bn)sinny 

m 

K + l  
+ 2 (Ane-"."+Bn+Cn)sinny ( x  > O), 
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where a, = 1 k2 - n21* and K < k < K + 1. The terms independent of x represent 
internal gravity waves of zero frequency and finite group velocity whose energy, 
with respect to the chosen frame of reference, travels with speeds U(l  k k/n) 
along Ox. Hence such waves can only propagate upstream if n < k (cf. Brether- 
ton 1967). The respective solutions for the pressure and density perturbations, 
P and p, are 

I 
K m 

n = l  K+l 
P = -k  x C,cosny- z nDneanxcosny (x < O ) ,  

K 

n=l  
P = - (nA, cos a,x + nD, sin a,x - kB,) cos ny 

co 

- C (ni4ne-a~z-kBn+kC,) cosny (x  > 0) ,  
K+l  

(2.4) 

K m 

n=l K+l 
and p = -k  2 nC,sinny-k2 D,eanxsinny (x  < 0), 

p = - I: (k2A, cos anx + k2D, sin anx - knB,) sin ny 
K 

n = l  
00 

- C (k2Ane-&nX - knB, + knCn) sinny ( x  > 0). 
K + 1  

16 follows from (2.2) that only one boundary condition is required on x = 0 
to determine the upstream flow uniquely, whereas three boundary conditions 
are required for the downstream solution. Stewartson (1968) considered the 
double limit v + 0 then t -+a, where v is the kinematic viscosity for the analo- 
gous rotating 3uid problem. He showed that a boundary layer occurs on the 
upstream side of the obstacle, but on the downstream side, the vorticity created 
by the no-slip condition is convected away by the fluid. Thus he concludes that 
the appropriate boundary conditions to describe a physically reasonable flow 
are the inviscid conditions on the upstream side of the obstacle and the viscous 
conditions on the downstream side. Applying these to the flow past a vertical 
thin barrier of dimensionless height in, we obtain the following conditions : 

@ continuous across x = 0 for 

a$/ax, p, aPjay continuous across x = 0 for $m < y 6 n, 

0 < y < 71, } (2.5) 

(2.6) 1 $(O,y) = -y for 0 < y < $71, 
(a$/ax),=,+ = 0 for 0 < y < $71, 

p(O+, y) = 0 for 0 < y < $71, 
where x = 0 + denotes the downstream side of the barrier. The boundary condi- 
tion on x = O+ for p assumes that the barrier is a conductor held at  the un- 
disturbed temperature and corresponds, in rotating fluid problems, to the body 
rotating with the angular velocity of the undisturbed fluid. We shall subsequently 
refer to this model as ‘Oseen model A’. 

We now write, more generally, 

(2.7) 1 
W ap X = O +  W 

= -g(y) = - x gnsinny, [q]x=O- = h(y) = x hnsinny, 
n = l  1 

m 

n = l  
and [p]”,:+ = p(y) = x qnsinny for o < y < 71, 

12-2 
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where g(y), h(y) and q(y) are zero for y 2 $71 to satisfy (2.5). On substituting ( 2 . 2 )  
to (2.4) in (2.7) and equating the coefficients of sinny, we obtain 

This expression for lif is continuous across x = 0 and does not depend upon the 
Stewartson boundary conditions (2.6) but only on the relations (2.i). 

It is to be noted that g(y), q(y )  and h(y) + q(y) give the discontinuities in 
vertical velocity, density and vorticity respectively, across the barrier. For the 
steady flow of a Boussinesq fluid, the density is a function of the stream function 
?I?, which satisfies 

Since YT = 0 on the barrier, the density and vorticity are continuous across the 
barrier for arbitrary upstream conditions. Hence if we require the density and 
vorticity to be continuous across the barrier, q(y) and h(y )  are zero and the 
Oseen model predicts no upstream influence, as the terms independent of x 
disappear in (2.8). This suggests that in the absence of viscosity, upstream 
influence is a t  most of the second order in the wave amplitude. 

Returning to the solution of Oseen model A, we substitute (2.8) and a similar 
expression for p into (2.6) to give the conditions 

V2Y + (S/PO) d p l m  = -wu- 

which are equivalent to three simultaneous linear integral equations for the 
determination of g(y), h(y) and q(y )  in the range 0 < y < an, where they are 
non-zero. 

Since the functions g(y), h(y) and p(y) are likely to be discontinuous a t  y = $71, 

the solution (2.8) will exhibit singularities on y = an. This can be most easily 
seen by considering the solution for k = 0,  in which case p = 0 and the perturba- 
tion stream function @ is given by 

where g, and h, satisfy the first two equations of (2.9) with k = 0 and q,, = 0. 
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The upstream solution is irrotational, whereas the downstream solution is the 
superposition of an irrotatioiial solution and a rotational solution, @r, where 

m rn 

$r = - x (h,/n2) sin ny and V2$-T = hn sin ny = h( y). 
1 1 

Thus the rotational part of the solution is independent of x and has zero vorticity 
for y > &I, that is outside the wake. So for y > in the effect of $r is to superpose 
a uniform velocity on the flow to satisfy the conservation of mass. The above 
properties of the solution agree with the theoretical work of Stewartson (1956) 
on the solutions of the viscous Oseen equations as v+ 0. 

However, the author has been unable to determine the precise nature of the 
singularity in h(y) and g(y) at  y = in and as pointed out by a referee, the Oseen 
problem, as posed, admits an iniinity of solutions. A consideration of the viscous 
Oseen equations in the limit as v+O suggests that a$/.lay will have a simple 
discontinuity across y = in and that h(y) will behave like - y). This means 
that the Fourier series for h(y), although defined, will not converge, but such 
Fourier series can be integrated term by term so that the expression (2.10) for 
@ is convergent. Hence to restore uniqueness, we hypothesize that the behaviour 
of the solution near y = in is as weakly singular as possible. This particular 
solution is almost certainly picked out by the method described in $3. 

For k > 0, the terms independent of x in the downstream solution will 
give rise to a similar wake, but for k > 1 the wake will be obscured by the lee- 
waves. 

3. Method of solution 
Equations (2.9) are solved by adapting the technique used by Drazin & Moore 

(1967) to solve the Long model of the same problem. The method is described 
by Jones (1964, p. 269) and expands g(y), h(y), q(y), y and sinny in terms of the 
complete set of orthogonal functions {sin 4ty) on the range [0,  an] as follows: 

a, m m 

g(y) = 3 Gtsin4ty, h(y) = x Htsin4ty, q(y) = x Qtsin4ty, 
t = l  t = l  t =1 

( - 1)s4s sin inn 
P m s  = n2 - 16s2 

From (2.7) and (3.1) 

gn = 

h, = 

8 "  8 "  
n s = 1  ns=1 

y = - C Yssin4sy and sinny = - PnSsin4sy, where Y,  = ( - 1 )  

for n + 4s and P,, = in for n = 4s. 

(3.1) 
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On substituting (3.1) and (3.2) into (2.9) and equating the coefficients of sin4sy, 
we obtain the following infinite system of equations, after some rearrangement: 

for s = 1'2, ..., where 

m K PnsPnt PnsPnt D, = Pn,Pnt+ C - 
K+l ' '8, = nz+l 2(n2- k2)&' n=l 

To find approximate solutions of (3.3), we assume C,, Bt and Qt are zero for 
t > M and that Pn,q is zero for n > 6 M ,  where M = 20 for most of the results 
presented in this paper. The values of gn, hn and qn are then calculated from (3.2) 
which in turn give the perturbation stream function $ on substitution in (2.8). 

- 
r I "  

I 

I -" 
-0.2 ,-045 ,-WI M \ 1  

-n 0 

FIGURE 1. Calculated flow for k = 0 using Oseen model. 

~ 

2ii 

The drag coefficient is calculated from the formula 

H 
C, = (&po U2 &H)-l 

x=o+ 

which gives on using (2.7), (3.1) and truncating as above 

1 M  H 
yh(y)dy = - 2 ( -  l)t+l--t. 

8 b 
QD = ;Io 2t=1 t 

Following Davis (1969), the wave drag coefficient is given by 

(3.4) 
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The convergence of the numerical procedure was tested by calculating C, for 
M = 16, 20 and 25 and fitting the formula 

C, ( M )  = a + bM-y 

to the results. It was found that as k was increased from 0 to 4.5, y varied between 
0.5 and 0.8, with the convergence, in general, being faster for the higher values of 
k. The variation of CD(M) between M = 16 and M = 25 was less than 5 %. 

I n  addition the technique was used to compute the solution (2.10) for the case 
k = 0 and the streamlines, shown in figure 1, are qualitatively similar to those 
obtained by Stewartson (1956) for the flow past a sphere. Although this solution 
had the slowest rate of convergence, the computed downstream flow for y > &r 
closely approximates a uniform flow, as predicted by the theory. The results 
give one confidence in the numerical procedure for k > 0. 

4. Discussion of results 
Apart from the Oseen model A described above, two other Oseen models 

were also computed in which the third boundary condition of (2.6) was replaced 
as follows: 

p(0 + , y) =:k2y for 0 < y < &r (Oseen model B), 
p continuous across 2 = 0 for 0 i y i i7r (Oseen model C). 

Model B assumes that the fluid on the downstream side of the barrier originates 
from the bottom of the channel, where the density is the greatest, and is equiva- 
lent in rotating fluids to the obstacle being fixed. It is worth noting that the 
boundary condition @+/ax = 0 on the downstream side of the barrier implies 
that ap/ax = 0 there and so an insulating barrier leaves the problem indeterminate. 

The flow patterns for the three models were almost identical in respect of the 
upstream velocity profile and the positions of the lee-wave crests and troughs, 
and the only significant variation was in the amplitudes of the lee-waves, which 
were largest for model B and smallest for model A. However, when the boundary 
condition on a$-/ax was made non-zero by putting (a$-/i3x)x=,,+ = y and 2y, the 
upstream velocity profile and the positions of the crests and troughs were altered. 
I n  view of the similarities between the models A, B and C, only the flow patterns 
for C are reproduced. 

The streamlines for the flow over a thin barrier for k = 1.5, calculated from 
the Oseen model C ,  are plotted in figure Z(a). These are to be compared with 
Davis's (1969) experimental observations shown in figure 2(b)  and the flow 
calculated from the Long model shown in figure 2 (c). The chief feature of figure 
2 (a )  is that the positions of the first wave trough and crest are in much closer 
agreement with the observations than in the Long model though the amplitude 
is too small. It is also to be observed that the upstream flow has a slight shear 
and the velocity profle is similar to that used in linearized models of air flow 
over mountains. The flow pattern does not predict the isolated region of turbu- 
lence observed above the first trough, though the fluid is moving very slowly in 
this region. No details of the flow are given in the neighbourhood of the barrier, 
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as the convergence of the solution is slower in this region and the results are less 
certain. 

In  figure 3(a), the flow pattern is shown for k = 2.25 and is to be compared 
with Davis's observed and calculated flows, figures 3 ( b )  and 3 (c) respectively. 
Again the Oseen model bears more resemblance to the observed flow, with the 
positions of the first trough and crest being close to their observed positions. 
Also the Oseen model does not contain the closed streamlines of the Long model. 

0 1 4" 71 

I .  , -  

I 

. ,  I I I 

--n 0 2 n  

FIGURE 2. (a) Calculated flow for k = 1.5 and upstream velocity profile, using Oseen 
model C. ( b )  Observed flow for k = 1.5 (from Davis). (c) Calculated flow for k = 1.5, 
using Long model (from Davis). 

Figures 4(a )  and 5 show the flow patterns for k = 3.6 and 4.5, respectively, 
calculated from the Oseen model C and the observed flow for k = 3.6 is shown in 
figure 4(b). The Long model flows for k = 3.5 and 4.5, calculated by Drazin & 
Moore (1967), show complex lee-wave patterns extending throughout the 
channel, whereas the complex flow patterns in figures 4 (a )  and 5 are confined to 
the wake of the barrier. In fact the flows bear a reasonable resemblance to the 
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following description of Davis (1969): “The flow remains laminar as it passes 
over the obstacle and forms an intense jet immediately downstream. Then this 
jet suddenly separates from the horizontal boundary behind the obstacle and 
erupts into a violently turbulent wake of approximately the same height as the 

FIGURE 3. (a) Calculated flow for k = 2.25 and upstream velocity profile, using Oseen 
model C. (b )  Observed flow for k = 2-25 (from Davis). (c) Calculated flow for k = 2.25, 
using Long model (from Davis). 

obstacle. Those streamlines which originate at  height greater than the obstacle 
are not greatly disturbed by the barrier and in no part of the wake is there any 
evidence of organized wave motion.’’ 

However there are important differences in the upstream flow between the 
Oseen model and Davis’s observations. The Oseen model for k = 2.25, 3-6 and 
4.5 predicts reversed flow ahead of the barrier, which would in practice be 
manifested as blocked flow. Also for k = 3.6 and 4.5, the velocity profile shows 
a weak jet just above the top of the barrier. Such phenomena were observed by 
Long (1955)) but Davis found no evidence of blocking or jet formation in his 
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experiments, though he did find discrepancies between the theoretical (Long 
model) and observed position of the upstream streamlines. Pritchard (1969) says 
of his experiments with rotating fluids: “An interesting feature of these experi- 
ments is that the body may generate disturbances in which the particle velocities 

0 2n --n 

FIGURE 4. (a )  Calculated flow for k = 3.6 and upstream velocity profile, using Oseen 
model C. ( b )  Observed flow for k = 3.6 (from Davis). 

n 

--n 0 2n 

FIGURE 5. Calculated flow for k = 4.5 and upstream velocity profile, using Oseen model C .  

on the axis (ahead of the body) exceed the velocity of the body. ” This discrepancy 
between the results of the stratified and rotating fluid experiments might be 
explained by the different types of turbulence which occur in the two flows or 
by the different techniques used to observe upstream influence. Another feature 
of the Oseen model, which was pointed out by a referee, is that it  predicts the 
fluid in the blocked region to be denser than any of the fluid at  t = 0, so in this 
respect the model is unrealistic. 
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I n  figure 6, the drag coefficient CD and wave drag coefficient CDw are plotted 
against k for the Oseen models A, B and C and the experimental results of Davis 
(1969) are given for comparison. It should be noted that Davis measured the 
drag of a thin barrier of dimensionless height in with one edge at  the height &r 
and so his measurements are not for the observed flows shown in figures 2 ( b ) ,  3 ( b )  
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FIGURE 6. The drag coefficient CD and wave drag coefficient CDW for a thin barrier of height 
&r placed on bottom of channel. x , CD values and +, CDW values for Omen model A: 
4, CD values and 0, CDW values for Oseen model B: D, CD values and 0, Cow values for 
Oseen model C : 0,  CD values and 0 ,  CDW values measured for barrier with one edge at 
height &J (from Davis). 

and 4 (b).  Although the boundary condition on p clearly has a significant effect 
on the magnitudes of C, and Cow, the behaviour of C, as a function of k is 
qualitatively similar for the three Oseen models and the experiments, with C, 
initially decreasing and finally increasing, almost linearly , with k. Maxworthy 
(1970), in his experiments on a sphere rising through a rotating cylinder of water, 
found that CD initially decreased and finally increased linearly with the inverse 
Rossby number. The initial decrease of CD as the inverse Rossby number in- 
creases from zero, was also predicted theoretically by Stewartson (1968). One 
curious feature of the results is that for k > 2, the Oseen model with the largest 
values of CD has the smallest values of C,, and vice versa. 
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5. Conclusions 
The results presented in this paper support Stewartson’s (1968) conjecture 

that the Oseen model gives “a qualitatively correct description of the grosser 
features of the flow ”, even though the approximation is invalid near the obstacle. 
In  particular, for the stratified flow over a thin barrier it predicts the position 
but not the amplitude of the fist  wave crest reasonably accurately for k = 1.5 
and 2.25, which the Long model fails to do. For k = 3.6 and 4.5 the downstream 
flow agrees fairly well with the descriptions of Davis (1969), with the flow 
pattern showing relatively small disturbances from uniform flow in the region 
above the wake whereas in the wake the streamlines are much more contorted. 
Also the predicted values of the drag coefficient for different values of k bear a 
qualitative resemblance to the values measured by Davis for a thin barrier 
placed with one edge in the middle of the channel. The most serious discrepancy 
with Davis’s results is the difference in the upstream flows. The Oseen models 
all predict upstream influence for k > 1 and for the higher values of k the flow 
is blocked, whereas Davis did not detect any blocking, though possibly such 
phenomena are easier to detect for a body towed along the axis of a rotating 
fluid, where there is little interaction with the boundary layer. 

The author would like to thank the referees for their helpful suggestions and 
criticisms. She would also like to acknowledge the work of Mr M. A. Myint on the 
Oseen model of the flow of a stratified fluid over an obstacle generated by point 
body forces and heat sources, which stimulated the present work. 
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